University
of Southern
California

An Information Mediator Network
for Tasks in Dynamic Environments

Ramesh Patil, Weixiong Zhang, and Wei-Min Shen

USC/Information Sciences Institute

May 1996
ISI/RS-96-444
» DR TEROTN WP 'i"i‘“‘
} Kyprored b patde ovixwr:
Diatsibaion Unitmited
Drre g,
ALy
INBPE%Q

INFORMATION

SCIENCES
INSTITUTE 3101822-1511
4676 Admiralry Way/Marina del Rey/California 90292-6695

An Information Mediator Network
for Tasks in Dynamic Environments

Ramesh Patil, Weixiong Zhang, and Wei-Min Shen

USC/Information Sciences Institute

May 1996
IS/RS-96-444

e et Aot a3 S SIS,

~DIEFHRBTTEON STATEMENT K ‘

Approved fox prblic relwase:
Distribution Unlmited

This paper is to appear, as an invited paper, in the 1996 Yearbook of Medical Informatics.

19960924 162

FORM APPROVED
REPORT DOCUMENTATION PAGE OMB NO. 0704-0188
Pubtic reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching exiting data
sources, gathering and maintaining the data ded, and completing and reviewing the collection of information. Send comments regarding this burden estimated or any

other aspect of this collection of infarmation, including suggestings for reducing this burden to Washington Headquarters Services, Directorate for Information Operations
‘alrd ril!e;;:rts, 11) %1 goJeﬁerson Davis highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (0704-0188),
lashington, 503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 1996 Research Report
3. TITLE AND SUBTITLE 5. FUNDING NUMBERS
An Information Mediator Network for Tasks in Dynamic Environments DARPA:
MDA972-94-2-0010
6. AUTHOR(S)
NLM:
Ramesh Patil, Weixiong Zhang, and Wei-Min Shen 1 RO1 LMO05324
7. PERFORMING ORGANIZATION NAM_EL(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATON
REPORT NUMBER
USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY 144
MARINA DEL REY, CA 90292-6695 ISURS-96
9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
National Library of Medicine AGENCY REPORT NUMBER
DARPA National Institutes of Health
3701 N. Fairfax Drive 6701 Rockledge Dr.
Arlington, VA 22203-1714 Bethesda, MD 20892

11. SUPPLEMENTARY NOTES

This paper is to appear, as an invited paper, in the 1996 Yearbook of Medical Informatics.

12A. DISTRIBUTION/AVAILABILITY STATEMENT 128B. DISTRIBUTION CODE

UNCLASSIFIED/UNLIMITED

13. ABSTRACT (Maximum 200 words)

Coordination of activities among information workers and services, tracking and managing activities, and intelligent
distribution of information are essential to the efficient operation of any large enterprise. This is particularly impor-
tant in the health-care domain, where many different organizations must cooperate to provide patient care reliably in
a dynamically changing environment. In this paper we present a distributed system that supports cooperative prob-
lem solving, activity management, and intelligent delivery of information in dynamic and unreliable environments.
The system consists of a network of task/context managers (TCMs). Each TCM manages a group of related agents.
It maintains up-to-date information on availability, operational status, and activities of participating agents, and it acts
as a mediator between service requesters and service providers. In addition, the TCM acts as a representative for its
agents with other TCMs allowing different groups of agents to collaborate with one anothers. This paper describes
the system architecture, its implementation and capabilities including matchmaking, plan monitoring and failure
recovery. Our system has been used in prehospital emergency patient information management applications.

14. SUBJECT TERMS 15. NUMBER OF PAGES

14
distributed agents, medical workstation, software engineering

16. PRICE CODE

17. SECURITY CLASSIFICTION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
NSN 7540-01-280-5500 . Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave biank).

Block 2. Report Date. Full publication date
including day, month,a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program
element numbers(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit

Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)

and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number. (if known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans. of ...; To be
published in... When a report is revised, include

a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, “Distribution
Statements on Technical
Documents.”

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.

NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

N

_—

Standard Form 298 Back (Rev. 2-89)

An Information Mediator Network
for Tasks in Dynamic Environments *

Ramesh Patil, Weiziong Zhang and Wei-Min Shen
USC / Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292
{ramesh,zhang,shen }@isi.edu

Abstract

Coordination of activities among information workers and services, track-
ing and managing activities, and intelligent distribution of information are
essential to the efficient operation of any large enterprise. This is partic-
ularly important in the health-care domain, where many different organi-
zations must cooperate to provide patient care reliably in a dynamically
changing environment. In this paper we present a distributed system that
supports cooperative problem solving, activity management, and intelligent
delivery of information in dynamic and unreliable environments. The sys-
tem consists of a network of task/context managers (TCMs). Each TCM
manages a group of related agents. It maintains up-to-date information on
availability, operational status, and activities of participating agents, and
it acts as a mediator between service requesters and service providers. In
addition, the TCM acts as a representative for its agents with other TCMs
allowing different groups of agents to collaborate with one anothers. This
paper describes the system architecture, its implementation and capabilities
including matchmaking, plan monitoring and failure recovery. Our system
has been used in prehospital emergency patient information management
applications.

Keywords: Distributed agents, medical workstation, software engineer-
ing

*This research was supported in part by ARPA contract #MDA972-94-2-0010, and NLM
grant 1 RO1 LMO05324. This paper is to appear, as an invited paper, in 1996 Yearbook of Medical
Informatics.

1 Introduction

The increasing use of workstations by health-care providers, administrative per-
sonnel, and ancillary services has given rise to the need for a general reliable
mechanism for coordinating activities and flow of information among agents in the
dynamic, distributed, heterogeneous health-care delivery environment.

In a distributed collaborative environment, individual problem solvers or agents
must cooperate to achieve common and individual goals. Unfortunately, dis-
tributed environments in the real world are dynamic and unreliable, imposing
many challenges and difficulties in developing multi-agent systems. In such envi-
ronments, agents may not be available or operational all the time, or communi-
cation between agents may not be possible at a given time. Yet the system as a
whole must continue to operate with the resources available, and fail gracefully
when some activity cannot be performed due to unavailability of needed service
agent.

To take a vivid, though somewhat extreme example, imagine the task of pro-
viding emergency medical services in the chaotic and dynamic environments of a
battlefield or that of a national or regional disaster. We hastily assemble a team
and deploy it. Each team member has different capabilities, and must cooper-
ate with others in an unreliable communication environment. Consider a combat
medical support group consisting of surgical teams, battalion aid stations, trans-
portation teams, intensive care units, laboratories, and other support units. They
must move frequently to keep up with the changing conditions of the battlefield.
Yet each of the medical units must use the services and resources of the others in
order to deliver life-saving health care. For example, a battalion aid station needs
a transportation team to evacuate a patient. However, the designated transporta-
tion unit may be temporarily out of service, or out of communication reach. Just
as this is happening, another transport unit returning from troop movement may
be available to provide a “lift-of-opportunity”. In such an evolving and constantly
changing distributed environment, it is difficult, if not impossible, for an agent to
keep track of all available agents and resources in planning and executing its tasks.

We have developed a system to address these needs. It consists of a network of
task/contezt managers (TCMs), which act as mediators between service requesters
and service providers. A TCM keeps track of the current status of a group of agents,
matches and routes service requests to the most appropriate agent(s), monitors
the progress of involved agent(s), recovers from agent failure if it occurs, and
finally composes the results based on the agent responses and delivers the results.
Furthermore, when a TCM is unable to resolve a service request using the local
agents it manages, it can delegate the request to other TCMs. The ability to
network TCMs together allows the system to be scaled and/or reconfigured during
operation.

Three main aspects need to be addressed when building a distributed mul-
tiagent system: agent theories, system architectures, and communication lan-
guages [14]. Agent theories define agents, their properties and reasoning schemes.
System architectures deal with structures in which agents are organized, and how
they communicate with one another. When environments are dynamic, the most
important feature of a systems architectures is reconfigurability; an agent must
be able to join the system at any time, to leave the system gracefully or due to
a failure, and to rejoin the system later. Agent communication languages pro-
vide the interface for inter-agent and human-agent communication, as well as the
task primitives and methods by which agent programs are compiled and executed.
Although all three aspects are important, the system architecture is critical for
effective operation in dynamic environments.

In this paper, we describe our system, with a focus on agent properties and
system architectures. In Section 2, we discuss required agent properties for cooper-
ative problem solving. In Section 3, we introduce Task/Context Managers (TCMs)
and discuss their functions. We then consider how TCMs can be connected in order
to deliver a broader coverage of services in Section 4. We present an application of
our system for patient information management in Section 5. We discuss related
work in Section 6, and finally conclude in Section 7.

2 Agents

An agent is a problem solver capable of performing certain services. In a coop-
erative system, an agent needs to communicate its capabilities to other agents.
Furthermore, an agent should be willing to accept a request if it can perform the
requested service. More important, an agent should be honest, not committing to
any request that it cannot fulfill. An agent can delegate to other agents a task or a
sub-task which it cannot carry out. It may also hold and communicate preferences
in selecting service providers. In short, an agent is an entity whose state can be
viewed as consisting of mental components such as beliefs, capabilities, choices,
and commitments [11].

Agents may communicate with one another directly. Such direct communica-
tion is important when large quantities of data, such as image files, need to be
exchanged between agents. However, direct communication between agents for
the purpose of recruitment (that is, assessment of their current capabilities and
availability) is inappropriate for several reasons. F irst, the agents will be over-
loaded with status requests. Second, the communication traffic among agents will
increase significantly, because each agent will need to poll all other agents in order
to identify the most suitable agent to recruit. Finally, an agent may not know
which other agents are operational at a particular time, and may thus waste time

Task/Context
manager

AN

Agent Agent | « o o Agent

Figure 1: Tree structure of TCM-agent connections.

contacting agents that are not operational. In addition, each agent will need to
encode plans for the execution of complex tasks (tasks requiring multiple steps),
error recovery plans when other agents fail, and contingent plans when appropriate
agents cannot be found. To overcome these problems we introduce another class of
agents, called Task/Context Manager (TCMs). The main idea in adopting TCMs
is to organize agents hierarchically into groups and to manage each group using a
supervisory agent (the TCM).

3 Task/Context Managers

Agents may be organized in a group along many dimensions. For example, agents
may be organized along geographic or organizational lines, they may be orga-
nized as a team of complementary agents with specified capabilities (e.g., a multi-
specialty team), or as a collection of similar agents (e.g., a single specialty team).
After an agent group is identified, a TCM can be introduced to manage and coordi-
nate agents in that group. Each agent registers with the TCM and communicates
directly with it. Two agents communicate their service requests and deliver results
to each other through the TCM, as shown in Figure 1.

The two main functions of a TCM are (a) obtaining and maintaining infor-
mation about agents, including their capabilities and status; and (b) acting as a
mediator between an agent requesting service and agent(s) providing services to
the requester.

3.1 Active bookkeeping

In order to act as a mediator between service requesters and service providers, a
TCM first needs to obtain and maintain the information about agent capabilities
and status. This can be done in two ways.

The first is called a TCM-active scheme, with an assumption that the TCM
knows the communication addresses at which agents may listen. The TCM pe-
riodically sends a status-inquiry message to these addresses. When a new agent

comes along, it uses a pre-assigned communication address and waits for a status-
inquiry message from the TCM. Whenever such a message 1s received, the agent
responds to it by providing information about its capabilities and status. When a
response comes from a previously inactive address, the TCM creates a new agent
record based on the responding message; otherwise, the TCM updates the agent
information. This method suffers from two deficiencies. First, it increases the com-
munication needs; second, it requires prior assignment of communication addresses
to each agent, thus making agents less mobile, and the system less scalable. On
the other hand, this approach does not require each agent to register/un-register
with the TCM, and agent malfunctions can be quickly detected and corrected.

The second is called an agent-active scheme. This scheme assumes that the
communication address of the TCM is known to each agent in the group managed
by the TCM. When an agent wishes to become active or change its status, it sends
a status message to the TCM, and the TCM records the agents status accordingly.
This scheme overcomes many of the problems associated with the previous scheme,
but it suffers from the problem that agent malfunctions become apparent to the
TCM only when it attempts to contact the agent for additional tasks.

To overcome these problems, the implemented software uses a modified agent-
active scheme. Here the TCM maintains information about the elapsed time since
the last communication with an agent. Each time contact is made between the
TCM and the agent, the agent’s “active” status is updated and the alarm clock is
reset. If no contact between the agent and the TCM occurs within a pre-specified
time interval, the TCM initiates contact for the purposes of updating the agent
status by polling the agent (as in the TCM-active scheme).

In summary, a TCM maintains a table of currently active agents including their
capabilities and status. The first time a connection between the TCM and a new
agent or a recovered agent is established, the TCM registers the agent by adding
it to the active agent table. The TCM updates information on agents whenever
new information is available. Thus, each TCM maintains up-to-date information
on the availability and status of each of the agents it controls. In the next section
we describe how the TCM mediates between agents requesting services and those
providing them.

3.2 Mediator

A TCM can be viewed as a blackboard system with specialized control structure.
A service requester can post the request to the blackboard. It is the TCM’s
responsibility to see that the request is serviced. Servicing a request involves four
steps.

1. Matchmaking and/or planning: developing a sequence of actions (tasks) that
must be taken to satisfy the request based on the available agents and re-
sources, matching individual tasks to available agents, and routing tasks to
selected agents.

2. Monitoring and detecting: monitoring the execution of tasks and the progress
of involved agents, and detecting possible failure.

3. Error recovery: recovering from agent error and other resource failure.

4. Responding: Integrating responses from service providers and generating a
response to the service requester.

In the following subsections we look at each of these steps in greater detail.

3.2.1 Matchmaking and planning

A request or task may originate from a human operator interacting with an ap-
plication agent or may be automatically generated by an agent in course of its
operations.

The TCM begins by matching the task statement with the capability descrip-
tions of the available agents. If the match identifies one or more capable agents,
the TCM simply acts as a matchmaker. That is, it selects the most appropriate
agent among those capable of performing the task, constructs a request for the
selected agent to perform the task, and routes the request to the agent.

Task requests that can be executed by a single agent in the current environment
are called primitive. If a task cannot be performed by any single available agent,
it is called non-primitive. To perform a non-primitive task, the TCM must use
plans that (hierarchically) decompose the task into primitive sub-tasks that can
be performed directly by available agents. This can be done in two ways: static or
dynamic. In the static method, a set of predefined plans are stored in a database.
Given a service request, the TCM identifies all the applicable plans and orders
them based on its preferences. Preference is based on a number of factors, such
as, plan size (the number of primitive tasks in a plan), locality (local agents are
preferred over those belonging to other TCMs), estimated task completion time,
and cost.

Given an ordered set of plans, the TCM chooses the most promising plan to
execute. If the execution of the current plan fails, the next most promising plan is
chosen for execution. This continues until a plan succeeds, or all applicable plans
are exhausted.

In the dynamic method, a planning system such as [13] is used to generate
a plan with the request as its goal based on the current system status, i.e., the

available agents and resources. If the plan fails during execution, the planning
system can replan around the failure utilizing as much of the previously executed
plan as possible.

Fach of the two approaches has advantages. The static method is simpler
and more predictable, and it allows organizational work-flow to be encoded and
automated. The dynamic approach, on the other hand, is more flexible and can
respond more readily to changes in operating conditions, and can handle unusual
situations. Our current implementation of TCM uses the static method because
of its simplicity.

After a plan is selected or generated, the TCM begins execution of the plan
by constructing appropriate agent requests and forwarding the results from one
agent to the next as dictated by the plan. Upon successful completion of the
plan, it constructs a response to the original request and returns the results to the
originating agent. The next section describes the monitoring and failure recovery
aspects of plan execution.

3.2.2 Monitoring, detecting, and recovery

To facilitate monitoring and recovery from error and failure, the TCM assigns a
unique identifier to each agent, which is used by the agent to identify itself at all
times, and a unique identifier to each task (transaction). In addition, the TCM
and agents independently record their activities in their own log files (or database).
An agent needs to record information regarding service requests sent and results
received, completed tasks, and the task currently being executed. The TCM needs
to record information on service request received, results forwarded, and the plan
currently being executed for each pending task.

There are at least three levels at which a failure can occur. The first occurs
at the task level. The preconditions or resources of a task may not be valid after
it starts. For example, the laboratory equipment an agent was planning to use
suffers a breakdown, or the resource the agent was planning to use is re-allocated
to a more urgent task. The second occurs at the agent level. An agent may have
an internal malfunction or may suffer from communication failure. The third and
most critical failure can occur at the TCM level. Similar to an agent, a TCM can
become inoperational due to internal malfunction or loss of communication. For
robust operation of the system, it is critical that the impact of these failures be
minimized. Strategies for recovering from each of these is described below.

If an agent can detect a task failure, it can report the failure to the TCM, and
the TCM can initiate recovery procedures in a fashion similar to that employed
for error recovery in multi-phase database transactions. If an agent malfunctions,
crashes unpredictably or suffers a loss of communication, it cannot report the fail-
ure to the TCM. To detect these situations, the TCM must monitor the execution

of each task. However, continuous polling of each task’s status is not practical
due to high computational and communication overheads. Furthermore, a better
scheme can be devised based on the fact that a functioning agent assigned to a
task is required to either complete the task or report failure.

When a TCM sends a task to an agent, they first negotiate a completion dead-
line for the agent to deliver the results. The TCM suspects that the agent has
failed if it does not receive a response or notification from the agent within this
time limit. When an agent failure is suspected, the TCM sends an inquiry to the
agent requesting a status update. If the agent does not respond, a failure is as-
sumed and recovery procedures are initiated. If the agent responds, the TCM and
the agent can renegotiate the task and set a new deadline. Finally, to facilitate
the tracking of tasks by the TCM, the agent may embed the status of outstanding
tasks in responses to other (possibly unrelated) messages from the TCM.

An agent failure may cause the TCM to stop executing the current plan. When
this happens, the TCM instructs all the involved agents to abandon related tasks,
and switches to a new plan. In some cases, it is possible for the TCM to recover
from agent failure by replanning and/or reassigning the failed task to other agents.
If the recovered plan can still be completed within the required deadline, the
process can continue from here. If it cannot then the TCM must negotiate with
the originator of the request for a new deadline or abandon the task.

Since a TCM is the central piece of a group of agents, its failure can be catas-
trophic. To prevent a disaster caused by a TCM failure, we introduce a secondary
TCM. The secondary TCM receives and maintains all the information available to
the primary TCM, and runs on a machine other than the one running the primary
TCM. It monitors the status of the primary TCM and takes over its role when it
detects a failure in the primary TCM. Whenever the TCM writes a new record
to its log file, it also forwards the record to the secondary TCM. The secondary
TCM enters this information in its log file, and updates the record of the primary
TCM’s status. When the secondary TCM detects a failure in the primary TCM
(i.e., no messages are received and the TCM does not respond to status request),
the secondary TCM changes its status to active TCM and informs the agents in
the group that it is now the TCM for the group. When the original TCM recovers
from the failure, it can contact the secondary TCM and resume its role by first
obtaining the log file and then contacting the agents in the group.

In the next section we describe the organization and operation of a network of
TCMs.

Task/Context

manager
Task/Context Task/Context

manager manager
Task/Context Task/Context ," Agent “.
manager manager \ Group S

t .. .
2 N s el

,” “ 0l Y

{ |Agent| e+ {Agent; | Agent

. ’ 1] 1

N \ ;
- - . 4

Figure 2: Hierarchical network of TCMs.

4 Information Mediator Network

Similar to agent organization, TCMs can also be organized into larger structures.
TCMs can be organized in a hierarchical structure or in a fully connected network,
shown in Figures 2 and 3. In the first architecture, several of TCMs are grouped
together under the control of a higher level TCM which mediates between its
member TCMs. This grouping can continue at a higher level of TCMs. Whenever
a TCM cannot find an agent or a lower level TCM in the group to carry out a
task, it passes the task as a service request to its superior TCM, which in turn
tries to find an agent or another TCM that can handle the task. In the second
architecture, TCMs are networked together as a group of peers. Whenever a TCM
cannot resolve a service request within its group of agents, it consults its peer
TCMs. If one of the other TCMs can handle the request, the requesting TCM
forwards the request to that TCM. The second architecture is more appropriate
when the number of TCMs is not very large and required service response time is
short.

We believe that as the number of TCMs grows a combination of the two archi-
tectures described above will be needed to provide a proper balance between the
response time and communication costs.

5 Applications

The application domain of our system is patient information and activity man-
agement. In the civilian domain, we are interested in coordinating team activities
involved in pre-hospital emergency medical services, as well as coordinating and
managing routine hospital-based patient care activities such as registering a pa-
tient, planning a patient hospital visit, and coordinating activities among physi-

8


~~~~~~~~~~

/ Agent / Agent
\ Group el \, Group /
Loc /":\“
. .
o Task/Context Task/Context .
4 manager manager
4 A}

Y encane=”

'
[
’
T
[
)
[}
[y ’
\ ’

.
AN Task/Context ot
Seel manager L

Figure 3: Interconnected network of TCMs.

cians, nurses, laboratories, and other ancillary and administrative services. In
military domains, we are interested in tasks of mobile hospital control and man-
agement, including maintaining dynamic status of battalion aid stations, surgical
teams, transportation teams, different laboratories, and other involved units; and
coordinating patient activities.

Our system is implemented using Microsoft Visual C++ and Microsoft Access
database software. The network communication is based on the TCP/IP protocol,
and inter-agent communication is based on Health Level 7 message format with
minor extensions. ,

The implemented system uses an agent-active scheme to establish a connection
between a TCM and an agent (c.f. Section 3.1), i.e., the first connection message
is initiated by the agent. For ease of implementation we use a database of pre-
defined (hand-crafted) plans for task decomposition rather than a planning system
to dynamically generate plans at run-time. Furthermore, we use the fully connected
network architecture to organize TCMs, since the number of tasks sent across

different TCMs is small.

6 Related Work

The area of software agents and distributed multi-agent systems is an active and
rapidly growing topic of current research. The available and relevant literature is




too vast to be adequately covered here. Interested readers are encouraged to look
at [7].

The idea of a Task/Context Manager was originally proposed in the context of
a healthcare professional’s workstation [10]. The idea of mediators was originally
proposed by Wiederhold [12] as a means of organizing heterogeneous database
systems. Considerable work in this area has been carried out under the ARPA
Knowledge Sharing Effort [9], and under ARPA’s Intelligent Integration of In-
formation program. Examples of systems based on mediators include SIMS [1, 2],
which is a mediator between database queries and multiple data sources. A special
mediator, called matchmaker [6], was used in a groupware system [8].

A mediator network based on facilitators, called a federated system, has been
proposed [5]. In such a system a facilitator routes messages to and from agents
running on a machine [4, 5] in order to schedule and maintain the flow of com-
munication. Cohen et al. [3] suggest an open architecture that is similar to the
one presented in Figure 2. Their system, however, does not address the issue of
dynamic reconfiguration, and does not address issues of failure detection and error
recovery.

7 Conclusions

We have presented a multiagent system for distributed cooperative problem solv-
ing. In our system, we introduced task/context managers (TCMs), which act as
mediators between service requesters and service providers. A TCM manages a
group of agents solving domain-specific problems, maintains information about the
capabilities and status of the agents, makes a plan to satisfy a request, matches and
routes tasks to agents, monitors the execution of the plan, and detects and recov-
ers from agent failure. We further introduced network architectures that connect
many TCMs to provide scalability and collaboration among large groups of agents.
The architectures presented in this paper are most suitable for robust distributed
collaborative problem solving in dynamically changing environments.

References

[1] Y. Arens, C Y. Chee, C.-N. Hsu, and C. A. Knoblock. Retrieving and inte-
grating data from multiple information sources. Intern. J. of Intelligent and
Cooperative Information Systems, 2:127-158, 1993.

[2] Y. Arens, C. A. Knoblock, and W.-M. Shen. Query reformulation for dynamic
information integration. J. of Intelligent Information Systems, to appear,
1996.

10




[3] P.R. Cohen, A. Cheyer, M. Wang, and S. C. Baeg. An open agent architecture.
In Working Notes of AAAI 1994 Spring Symp. on Software Agents, pages 1-8,
Stanford, CA, 1994.

[4] M. R. Genesereth. An agent-based approach to software interoperability. In
Proc. of the DARPA Software Technology Conf., 1992.

[5] M. R. Genesereth and S. P. Ketchpel. Software agents. Communications of
the ACM, 37:48-53, 1994.

[6] D. Kuokka and L. Harada. Matchmaking for information agents. In Proc.
of the 14** Intern. Joint Conf. on Artificial Intelligence, (IJCAI-95), pages
672-678, Montreal, Canada, 1995.

(7] V. Lesser, editor. First Int. Conf. on Multi-Agent Systems, Menlo Park, CA,
June 12-14, 1995. Amer. Assn. for AI, AAAI Press.

[8] J. McGuire, D. Kuokka, J. Weber, 3. Tenenbaum, T. Gruber, and G. Olsen.
SHADE: Technology for knowledge-based collaborative engineering. Concur-
rent Engineering: Research and Applications, 1, 1993.

[9] R. S. Patil, R. E. Fikes, P. F. Patel-Schneider, D. McKay, T. Finnin, T. R.
Grube, and R. Neches. The DARPA knowledge sharing effort: Progress report.
In Proc. of 3rd Intern. Conf. on Principles of Knowledge Representation and
Reasoning, pages 777-788, Cambridge, MA, 1993.

[10] R. S. Patil, J. Silva, and W. Swartout. An architecture for healthcare
provider’s workstation. Int J Biomed Comput, 34:285-99, 1994.

[11] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51-92,
1993.

[12] G. Wiederhold. Mediators in the architecture of future information systems.
IEEE Computer, pages 38—49, 1992.

[13] D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P. Wesley. Planning
and reacting in uncertain and dynamic environments. J. Ezperimental and
Theoretical Artificial Intelligence, 7:121-152, 1995.

[14] M. J. Wooldridge and N. R. Jennings. Agent theories, architectures, and
languages: A survey. In Intelligent Agents: Theories, Architectures, and Lan-
guages, pages 1-32. Springer-Verlag,, Amsterdam, The Netherland, 1995.

11




